Raman Spectra of BiCl₃ and SbCl₃

tailed discussion of the reasons for this which was earlier given for three-coordinate phosphorus compounds⁴ is completely transferable to the present four-coordinate silicon compounds, with the substitution of one of the groups attached to silicon for the phosphorus lone-pair electrons. Since the purpose of this paper is to discuss rotational barriers, it follows from the above that the observed $\Delta G_c^{\dagger}(\max)$ must be an upper limit for the rotational barrier about the silicon-nitrogen bond.

This work also suggests that rotational barriers about silicon-nitrogen bonds are substantially lower than those about analogous phosphorus-nitrogen and sulfur-nitrogen bonds. In a set of (very roughly) analogous compounds the following barriers are observed: CCl₃SN(CH₂Ph)₂, 15.0 kcal/mol;¹ CClH₂P(Cl)N(CH₃)₂, 11.3 kcal/mol;⁸ CClH₂Si- $(CH_3)(Cl)(N(CH_3)_2)$, <7.2 kcal/mol (present work).

Recent theoretical analyses of the origins of rotational barriers in compounds amenable to ab initio molecular orbital calculations have shown that net rotational barriers are the result of a fine balance between attractive and repulsive interactions involving adjacent electron pairs and polar bonds.¹³ In analyses of the "gauche effect" in second-row compounds ("the tendency of species containing adjacent electron pairs and/or polar bonds to exist preferentially in that conformation which has the maximum number of gauche interactions between these electron pairs or polar bonds"¹⁴) it seems that polar bond-polar bond interactions are greater than polar bond-lone pair interactions which are, in turn, greater than lone pair-lone pair interactions.

The compounds being compared in this study contain a third-row atom, bonded to other groups by polar bonds. The third-row atom (Si, P, S) is linked to nitrogen, bearing a lone

(13) S. Wolfe, Accounts Chem. Res., 5, 102 (1972). (14) S. Wolfe, L. M. Tel, J. H. Liang, and I. G. Csizmadia, J. Amer. Chem. Soc., 94, 1364 (1972).

pair of electrons, and also linked to other groups by polar bonds. There are many different types, and strengths, of interactions in these molecules, and it is premature to attempt to make a detailed analysis of them in view of the limited data available. Two observations may be germane; the observed barrier increases as the electronegativity of the atom attached to nitrogen (and the number of lone pairs of electrons it formally carries) increases. However in the phosphorus system, at least, the barrier decreases sharply⁵ in going from a phosphonamidous chloride, $RP(CI)NR'_2$, to the corresponding fluoride, RP(F)NR'2. We have previously argued that this effect is best interpreted in terms of a p_{π} -d_{\pi} multiple-bond contribution to the rotational barrier,⁵ but it must be conceded that the present negative observations in the silicon-nitrogen system do not indicate any very substantial p-d interaction with a geometric preference in this system.

In view of the relatively primitive level of cur understanding of the bonding of third-row elements, it may be best to summarize these observations on rotational barriers as a set of provocative data in search of a reasonable explanation.

Registry No. Table I $R = CH_3$, $R' = CH_3$, $R'' = N(CH_3)_2$, 3768-58-9; $R = CH_3$, $R' = CH_2 = CH$, $R'' = N(CH_3)_2$, 13368-45-1; $R = CH_3$, $R' = C_6H_5$, $R'' = N(CH_3)_2$, 33567-83-8; R = CH_3 , $R' = CH_2 = CH$, R'' = C1, 25374-07-6; $R = CH_3$, $R' = CH_3$, R' = C $CH_2Cl, R'' = Cl, 36245-72-4; R = CH_3, R' = C_6H_5, R'' = Cl,$ $3\underline{6245}$ -73-5. (CH₃)₃SiN(CH₂CH₃)₂, 996-50-9; (CH₃)₃Si-N-CH₂-CH₂, 2116-90-7.

Acknowledgments. This work was supported by Public Health Service Grant No. CA-07182 from the National Cancer Institute and by a grant from the President's Fund, California Institute of Technology. F. Fong was a participant in a National Science Foundation Undergraduate Research Program.

Contribution from the Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, and the Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

Raman Spectra of Molten Bismuth Trichloride and Antimony Trichloride and of Their Mixtures with Potassium Chloride or Aluminum Trichloride^{1a}

K. W. FUNG,^{1b} G. M. BEGUN,^{*1c} and G. MAMANTOV^{*1b}

Received April 17, 1972

Raman spectra have been obtained for solid and molten SbCl₃, molten equimolar SbCl₃-AlCl₃, SbCl₃-KCl mixtures, pure BiCl₃, equimolar BiCl₃-AlCl₃, and BiCl₃-KCl mixtures. The major species present in these samples have been postulated and their structures discussed.

Introduction

The crystal structure of solid SbCl₃ has been studied by X-ray diffraction.² The results show that there are discrete SbCl₃ molecules in the crystal located at sites with C_{s} symmetry. Nuclear quadrupole resonance experiments³ indicate that the molecule in the crystal has a lower symmetry

(1) (a) Research sponsored by the United States Atomic Energy Commission under Contract At-(40-1)-3518 and under contract with Union Carbide Corp. (b) Oak Ridge University of Tennessee. (c) Oak Ridge National Laboratory.

(2) I. Lindqvist and A. Niggli, J. Inorg. Nucl. Chem., 2, 345 (1956).

(3) T.-C. Wang, Phys. Rev., 99, 566 (1955).

than C_{3v} because of intermolecular forces. However, only the four Raman lines of a typical C_{3v} molecule were reported for crystalline SbCl₃ by Krishnamurti.⁴ Raman data on molten SbCl₃ are reported in several papers,⁴⁻⁶ but the results show considerable disagreement. We, therefore, reinvestigated the Raman spectrum of SbCl₃ in order to clarify the situation. As a result of conductance measurements 7

(4) P. Krishnamurti, Indian J. Phys., 5, 113 (1930).

- (5)
- P. Daure, C. R. Acad. Sci., 187, 940 (1928). K. W. F. Kohlrausch, "Ramanspektren," Edwards Brothers, (6) Ann Arbor, Mich., 1945, p 133. (7) P. Texier and J. Desbarres, C. R. Acad. Sci., Ser. C, 266,

503 (1968).

54 Inorganic Chemistry, Vol. 12, No. 1, 1973

Figure 1. Raman spectra of SbCl₃ containing samples: A, solid SbCl₃; B, molten SbCl₃; C, molten SbCl₃-KCl (50:50 mol %); D, molten SbCl₃-KCl (33:67 mol %).

of AlCl₃ in molten SbCl₃ and of KCl in molten SbCl₃,^{8,9} the presence of $SbCl_2^+$, $AlCl_4^-$, and $SbCl_4^-$ in these mixtures has been suggested. We studied the Raman spectra of these mixtures in the hope of characterizing the major species present. The Raman spectra of molten BiCl₃ and BiCl₃ in mixtures with alkali chlorides were investigated by Kenney and Powell;¹⁰ however, the spectra were weak, and the conclusions were tentative. Recently, Oertel and Plane¹¹ made an extensive study of chlorobismuthates in aqueous solution and in solid compounds. We, therefore, reexamined the molten systems with the hope of obtaining better spectra which could be compared with the aqueous data.

Experimental Section

The anhydrous chlorides used were prepared in the laboratory of G. P. Smith at Oak Ridge National Laboratory. All preparative op-

- (8) G. B. Porter and E. C. Baughan, J. Chem. Soc., 744 (1958).
 (9) A. G. Davies and F. C. Baughan, J. Chem. 5
- (1961). (10) J. T. Kenney and F. X. Powell, J. Phys. Chem., 72, 3094 (1968).
- R. P. Oertel and R. A. Plane, Inorg. Chem., 6, 1960 (11)(1967).

Table I. Raman Frequencies of Solid and Gaseous SbCl₂ $(cm^{-1})^a$

	Gaseous		Solid		Assignment	
	Ref 16	Ref 4	Ref 16	This work	C _{av}	Cs
	384 s, P	338	340 s	340 vs	$\nu_1(A_1)$	Α'
	361 w, sh	312	314 ms	318 s	$\nu_{3}(E)$	\mathbf{A}'
				312 s		A''
			168 m	169 m		b
	154 m, P	166	150 mw	150 m	$\nu_2(A_1)$	A'
	127 m	146	137 mw	138 m	$\nu_{a}(E)$	A'
				133 m		Α΄΄
			93 w	94 m		Lattice
			60 m			

^a Key: s, strong; m, medium; sh, shoulder; v, very; w, weak; P, polarized. ^b Long Sb-Cl intermolecular stretching.

erations and transfers were conducted in vacuum systems or in a nitrogen-filled drybox with the H₂O content below 10 ppm. Bismuth and antimony trichlorides were prepared by treating reagent grade metals with dry chlorine gas and purifying the products by repeated distillations. Reagent grade KCl was treated with anhydrous HCl and processed in a manner described elsewhere¹² to remove any residual impurities. Aluminum chloride was synthesized from highpurity aluminum by passing specially prepared HCl vapor over the molten metal.13

The salts were sealed in evacuated Pyrex tubes, 6-mm o.d. by \sim 25 mm. The samples were melted by wrapping a platinum wire spirally around the sample tube and passing an electric current through the wire. Temperatures were not closely controlled or measured. For BiCl₃ mixtures, temperatures ranged from around 250° for the sample of high BiCl₃ content to nearly 600° for the 25:75 mol % BiCl₃-KCl sample.¹⁴ Equimolar BiCl₃-AlCl₃ is liq-Temperatures for the SbCl₃-containing melts uid¹⁵ above 184°. ranged from near 80° for pure SbCl₃ to 200° for the SbCl₃-KCl (33:67 mol %) sample. Visual inspection of the melts in the laser beam ensured that no solid phases were present.

Samples were clamped into position in the Raman spectrometer before melting. A laser beam was focused at right angles to the long axis of the sample tubes and the spectra were observed at right angles to both the laser beam and the sample tube. Qualitative polarization measurements were made by rotating the plane of polarization of the laser beam with a half-wave plate. Appropriate spike filters were employed to attenuate the background laser lines in the Raman spectra.

A Spectra-Physics Model 141 argon ion laser was used to illuminate the sample. In most cases observations were made with both the 488.0- and 514.5-nm laser lines. Despite very careful preparation, small amounts of impurities caused discoloration of the BiCl_a-KCl samples, and a Spectra-Physics Model 125 helium-neon laser emitting light at 632.8 nm was therefore used for observation of these spectra. Power levels at the sample were approximately 80 mW for the argon ion laser lines and 20 mW for the helium-neon laser line. A Cary Model 81 monochromator, coupled with a cooled 9558 EMI photomultiplier tube with a photon counting system, was used to record the Raman spectra.

Results and Discussion

Solid and Molten SbCl₃. The Raman spectrum of solid SbCl₃ at room temperature is shown in Figure 1A. The band positions and their assignments are given in Table I with the results of previous studies for comparison. The data are different from the old results⁴ and in good agreement with recent work,¹⁶ except for better resolution. From comparison with the gas- and liquid-phase data (see below) and the relative intensity, we assign the highest frequency band at 340 cm⁻¹ to the symmetric stretching v_1

- (12) C. R. Boston and G. P. Smith, J. Phys. Chem., 62, 409 (1958).
- (13) N. J. Bjerrum, C. R. Boston, and G. P. Smith, Inorg.
- Chem., 6, 1162 (1967). (14) C. C. Addison and W. D. Halstead, J. Chem. Soc. A, 1236 (1966).
- (15) B. G. Korshunov, N. I. Kaloev, L. A. Nisel'son, and O. R. Gavrilov, Russ. J. Inorg. Chem., 13, 1017 (1968).
 (16) E. Denchik, S. C. Nyburg, G. A. Ozin, and J. T.
- Szymanski, J. Chem. Soc. A, 3157 (1971).

Table II. Raman Frequencies of Molten $SbCl_3$ and Molten $SbCl_3$ -KCl Mixtures $(cm^{-1})^a$

SbCl		50:50 mol %	33:67 mol %	Assign-	
This work	Ref 5	SbCl3-KCl	SbCl ₃ -KCl	C_{3v}	
 358 vs, P	350	358 s. P	350 s. P	ν,	
332 s	315	334 m	327 sh	v_{2}	
153 m	150	155 m	150 sh	v	
130 m	123	136 m	132 m	v,	

^a Key: v, very; sh, shoulder; s, strong; m, medium; P, polarized.

(A') mode. The two doublets were assigned to asymmetric stretching (ν_3) and bending (ν_4) modes. The splitting of these E modes is caused by the lowering of the symmetry from $C_{3\nu}$ to C_s in the solid crystalline phase. By comparison with the gas-phase and melt spectra, the band at 150 cm⁻¹ was assigned to ν_2 . The band at 169 cm⁻¹, which is absent in the gas and melt spectra, is, we believe, the result of the stretching of the intermolecular, long Sb-Cl bond indicated by X-ray analysis.² The band at 94 cm⁻¹ is in the frequency region for a crystal lattice mode. We conclude that the Raman data for solid SbCl₃ can be well interpreted in terms of the crystal structure.

The Raman spectrum of molten SbCl₃ is shown in Figure 1B. The band positions, the assignment, and the previous results are given in Table II. The specific conductance $(0.8 \times 10^{-6} \text{ ohm}^{-1} \text{ cm}^{-1})$ and viscosity (0.0184 P) measured¹⁷ for molten SbCl₃ indicate that the melt contains discrete molecular units. The spectrum is, indeed, well interpreted by assuming SbCl₃ molecules with C_{3v} symmetry. The polarization of v_2 was not observed. However, v_2 in other C_{3v} molecules, such as AsCl₃, is only weakly polarized.¹¹

Molten $SbCl_3$ -KCl. The spectra of molten $SbCl_3$ -KCl (50:50 and 33:67 mol %) are shown in Figure 1C and 1D, respectively, and the data are given in Table II. The solid spectra (glasses) are similar to those of the molten state. The mixture spectra are very close to the spectrum of pure molten SbCl₃, with slight shifts in band positions. At high KCl concentrations the resolution of the SbCl₃ bands is poorer. Antimony trichloride is a Lewis acid and a good Cl⁻ acceptor. The complex anion SbCl₄⁻ in aqueous solution¹⁸ and in the molten salt⁸ has been postulated. The Raman spectrum of $[Et_4N]$ SbCl₄ has been reported¹⁹ for the solid and in MeNO₂ solution. In this case a C_{2v} or distorted T_d symmetry is postulated for the SbCl₄⁻ ion. With $C_{2\nu}$ symmetry one should observe four Sb-Cl stretching frequencies in the Raman spectrum: two symmetric, A_1 , polarized frequencies and two antisymmetric bands. In solution, Ahlijah and Goldstein¹⁹ assigned bands at 342 and 297 cm^{-1} as symmetric stretches and a band at 249 cm^{-1} as an antisymmetric stretch with the other antisymmetric stretch near 313 cm^{-1} (observed in the ir solid spectrum only). If SbCl₄⁻ were produced in our melt, we would expect to see a strong polarized line near 297 cm^{-1} and another medium strength depolarized line near 249 cm⁻¹. The SbCl₃-KCl (50:50 mol %) sample, Figure 1D, shows some general broad emission in this region but polarization studies did not show any definite polarized bands in this region. We believe the close resemblance between the Raman spectrum of pure molten $SbCl_3$ and the spectra of the SbCl₃-KCl molten mixtures is evidence against the for-

(1970).

Inorganic Chemistry, Vol. 12, No. 1, 1973 55

mation of appreciable quantities of $SbCl_4^-$ in the molten mixtures. The broad bands appearing in the region 250-300 cm⁻¹ in the mixtures with highest KCl concentrations do indicate, however, the possible formation of some quantity of higher chloride complexes of antimony.

Molten SbCl₃-AlCl₃. Texier²⁰ measured the equivalent conductance of AlCl₃ in molten SbCl₃ and proposed the reaction

 $SbCl_3 + AlCl_3 \Rightarrow SbCl_2^+ + AlCl_4^-$

The AlCl₄⁻ species is well characterized in chloroaluminates.²¹ In nonaqueous systems²² AlCl₃ is a stronger Lewis acid than SbCl₃, and the formation of AlCl₄⁻ appears quite reasonable. The spectra of molten Al₂Cl₆ and equimolar SbCl₃-AlCl₃ are shown in Figure 2C and 2B, and the band positions are given in Table III. The results do not support the formation of AlCl₄⁻ (complete absence of the

(22) D. S. Payne in "Non-Aqueous Solvent Systems," T. C. Waddington, Ed., Academic Press, New York, N. Y., 1965, Chapter 8.

⁽¹⁷⁾ P. Texier, Bull. Soc. Chim. Fr., 4315 (1968).

 ⁽¹⁸⁾ G. P. Haight, Jr., J. Amer. Chem. Soc., 75, 3848 (1953).
 (19) G. Y. Ahlijah and M. Goldstein, J. Chem. Soc. A, 326

⁽²⁰⁾ P. Texier, Bull. Soc. Chim. Fr., 4716 (1968).

⁽²¹⁾ G. Torsi, G. Mamantov, and G. M. Begun, *Inorg. Nucl. Chem. Lett.*, 6, 553 (1970).

Table III.	Raman Freque	ncies of Molter	n Equimolar
SbCl ₃ -AlC	$l_3(cm^{-1})^a$		-

SbCl ₃	SbCl ₃ -AlCl ₃	Al ₂ Cl ₆ ^b	AlCl ₃ ^c
	595 vw	608 m	
	497 w, P	512 m	
		440 w	
	376 s, P		~371 s
358 vs. P	344 m. P	341 vs. P	
332 s	,	290 m. P	
	~255 b, w	·	
	220 w. P	218.5 s. P	
153 m	,	166 w	
	145 w. P		~146 m
130 m	128 w		
		119 s	
	99 vw	104 s, P	

^a Key: v, very; w, weak; m, medium; s, strong; P, polarized; b, broad. ^b Liquid, ref 21. ^c Gas, ref 23.

strong AlCl₄⁻ band at 186 cm⁻¹).

If we examine the spectrum of the equimolar mixture we easily see the main features, perhaps altered slightly, of the liquid SbCl₃ spectrum. However, it is much harder to find the Al₂Cl₆ components of the spectrum. The weak lines are entirely missing and the strong lines are either obscured or very weak. The very strong doublet at 104 and 119 cm⁻¹ is probably present but not resolved. The very sharp line at 218.5 cm⁻¹ is represented by a weak line at 220 cm⁻¹, and the strong band at 341 cm^{-1} is either represented by a small peak at 344 cm⁻¹ or shifted to 376 cm⁻¹. One might say that the SbCl₃ spectrum is relatively much more intense and that Al_2Cl_6 is a much poorer scatterer. However, this is contradicted by the ease with which a strong spectrum is obtained from molten Al_2Cl_6 (Figure 2C). It appears most likely that Al_2Cl_6 is present at a much lower concentration in the mixture than indicated by its mole per cent. The one new feature of the mixture spectrum is the appearance of a new polarized line at 376 cm^{-1} . Beattie and Horder²³ have examined the Raman spectra of Al₂Cl₆ vapor at high temperatures and assigned two lines to monomeric AlCl₃. These lines are v_1 371 cm⁻¹ (s) and v_4 146 cm⁻¹ (m). The region near 146 cm⁻¹ is obscured in our spectrum but the line at 376 cm^{-1} could be assigned to monomeric AlCl₃. If a polymeric species $(SbCl_3 \cdot AlCl_3)_n$ were formed, one might expect a relatively featureless spectrum with rather broad bands. Certainly our spectrum indicates interaction between SbCl₃ and AlCl₃. This interaction shifts either the Al-Cl or the Sb-Cl stretching frequency to a higher value. In the first case this means the AlCl₃ is more nearly monomeric, and this view is supported by the disappearance of many of the Al_2Cl_6 lines. In the second case the SbCl₃ would be assuming a more nearly planar structure rather than its usual pyramidal form. We were not able to choose between these two interpretations. Spectra at varying mole ratios might clarify the situation.

Molten BiCl₃. Recently, Denchik, *et al.*,¹⁶ examined the structure of solid BiCl₃ and concluded that Bi is strongly bonded to three chlorine atoms and less strongly bonded to five more. From the viscosity data²⁴ (~0.3 P), one should expect the long-range Bi-Cl interaction to be present to a certain degree in the molten state, but it should be quite weak. The Raman spectrum of molten BiCl₃, shown in Figure 3A and Table IV, is quite different from that of solid BiCl₃. It is more similar to the spectrum of

(23) I. R. Beattie and J. R. Horder, J. Chem. Soc. A, 2655 (1969).

(24) G. J. Janz, "Molten Salts Handbook," Academic Press, New York, N. Y., 1967, pp 54, 292.

Fung, Begun, and Mamantov

Figure 3. Raman spectra of molten $BiCl_3$ -containing samples: A, $BiCl_3$; B, $BiCl_3$ -CsCl (75:25 mol %); C, $BiCl_3$ -KCl (67:33 mol %); D, $BiCl_3$ -KCl (50:50 mol %); E, $BiCl_3$ -KCl (25:75 mol %).

monomeric gaseous BiCl₃, which has C_{3v} symmetry. The spectrum is insensitive to temperature, ^{10,15} and it is therefore reasonable to ascribe it to discrete molecular vibration modes rather than to quasilattice structure. Because of the similarity of our Raman spectrum to that reported in aqueous solution,¹¹ we conclude that the species present in molten BiCl₃ are similar to those in aqueous solution. The simplicity of the spectra of molten BiCl₃ indicates that C_{3v} symmetry is still maintained although the considerable decrease in the stretching frequencies shows general intermolecular interactions which would account for the high viscosity but not for the reported specific conductivity (~0.44 ohm⁻¹ cm⁻¹).²⁴ In addition, our data show the conventional C_{3v} intensity pattern rather than that found by Kenney and Powell.¹⁰ Since the spectra of BiCl₃ in H₂O and alcohols¹¹ are similar to those of the pure molten state, the species is unlikely to be solvated in these solvents.

Molten BiCl₃-KCl Mixtures. The appearance of the spectra for molten BiCl₃-KCl and BiCl₃-CsCl mixtures, as shown in Figure 3B-E, is similar to that of molten BiCl₃: a strong polarized band at 300 cm^{-1} , a depolarized shoulder on the low-energy side, and another depolarized band at ~100 cm⁻¹ which probably contains two bands. The band positions for the molten mixtures are summarized in Table IV.

Table IV.	Raman Frequ	encies for BiCl.	and BiCl	-Containing	Melts (cm	-1)a

BiCl ₃			67:33 mol %		50:50 mol %		25:75 mol %
Gas ^b	Aqueous ^c	Molten	BiCl ₃ -KCl	BiCl ₄ - c	BiCl ₃ -KCl	BiCl ₆ ^{3-c}	BiCl ₃ -KCl
 342 s, P 322 w sh	307 s, P 272 m	304 s, P 277 m	300 s, P 272 m sh h	293 s, P 256 m	294 s, P 252 m sh h	263 s, P 220 w	276 s, P 236 m sh h
123 m, P 107 mw	120 m	122 m	116 m	115 w	108 m	110 w	80 m, sh, b

^a Key: s, strong; m, medium; w, weak; b, broad; sh, shoulder; P, polarized. ^b Reference 16. ^c Reference 11.

From the comparison with the results in aqueous media,¹¹ as shown in Table IV, and the spectra of solid $(N_2H_5)_3$ -BiCl₆ and C₆H₁₃N₂BiCl₄, ¹¹ we believe that the anionic species BiCl₄⁻¹ and BiCl₆³⁻ are formed by mixing appropriate amounts of BiCl₃ and KCl. Their structures are similar to the species in aqueous solution, *i.e.*, C_{2v} or distorted T_d for BiCl₄ and O_h for BiCl₆³⁻. The presence of BiCl₄ and BiCl₆³⁻ in those systems is also supported by the phase dia-gram studies.¹⁴ Oertel and Plane¹¹ have made a considerable case for a $BiCl_5^{2-}$ ion in aqueous solution and such an ion might be postulated here. Certainly the evidence is not conclusive, but we tend to favor the simpler picture without BiCl₅²⁻, since such a structure would produce more complex Raman spectra. The melting temperatures of the various BiCl₃-KCl mixtures varied considerably, and it was not possible entirely to eliminate the possibility that differences in the spectra were caused by the shifting of chemical equilibria with temperature changes. Observations on the lower melting mixtures made at higher temperatures, however, showed no appreciable changes in the spectra. In addition, in several cases, glassy solids were formed upon cooling rather than the usual polycrystalline solids, and the spectra of these glasses were indistinguishable from the melt spectra. Our main conclusions are that there is a remarkable similarity between the aqueous and molten Raman data and that BiCl₃ in both cases forms higher species of the type $\operatorname{BiCl}_{n}^{(n-3)-}$

Molten BiCl₃-AlCl₃. The Raman spectrum of the molten equimolar $BiCl_3$ -AlCl_3 mixture is shown in Figure 2D. As with $SbCl_3$, the absence of a band at 186 cm⁻¹ shows that there is very little $AlCl_4^-$ present. The spectrum is poorer than the $SbCl_3$ -AlCl_3 spectrum and may be interpreted as being produced by a mixture of BiCl₃ and Al₂Cl₆, although we see only the strongest Al_2Cl_6 bands. In contrast to the SbCl₃ case, we do not find evidence of AlCl₃ monomer or complex production. The congruently melting solid compound obtained in the phase studies¹⁵ does not seem to be present in the melt.

Registry No. Bismuth trichloride, 7787-60-2; antimony trichloride, 10025-91-9; potassium chloride, 7447-40-7; aluminum trichloride, 7446-70-0; BiCl₆³⁻, 15977-99-8; BiCl₄, 20057-70-9.

Acknowledgment. We wish to thank Drs. G. P. Smith and C. R. Boston for the use of their drybox and for furnishing purified compounds.

> Contribution from the Department of Chemistry, University of Missouri-Rolla, Rolla, Missouri 65401

The Synthesis and Spectroscopic Properties of Vanadium(III) Squarate Trihydrate

e far of i 4.22³²³-3125

截日本の自

S. M. CONDREN and H. O. McDONALD*

Received March 30, 1972

Vanadium(III) squarate trihydrate has been prepared; and the infrared, X-ray diffraction, and electronic spectra of the complex indicate that the central metal atom is in a slightly distorted octahedral field. A thermogravimetric study has shown that the complex loses three water molecules upon heating. A hydroxy-bridged, dimeric structure has been proposed from these data.

The preparation and spectroscopic properties of several metal complexes of diketocyclobutenediol¹ (1,2-dihydroxy-3,4-diketocyclobutene) have been previously reported.²⁻⁴ These reports have usually presented preparations and little spectral data. In this report the preparation is similar to the one reported by West and Niu.² Also, the powder X-ray diffraction, thermogravimetric, magnetic, and infrared and electronic spectral data are presented and discussed.

Experimental Section

Materials. Squaric acid and hexachloropropene were purchased

- (1) Hereafter, diketocyclobutenediol will be referred to by its accepted common name, squaric acid, and the dianion, diketocyclobutenediolate will be referred to as the squarate anion. (2) R. West and H. Y. Niu, J. Amer. Chem. Soc., 85, 2589
- (1963)

(3) G. Doyle and R. S. Tobias, Inorg. Chem., 7, 2484 (1968). from Aldrich Chemical Co., Milwaukee, Wis. Vanadium pentoxide was purchased from Alfa Inorganics, Beverly, Mass. Vanadium trichloride hexahydrate was prepared by the hydrolysis of vanadium trichloride.⁵ Vanadium trichloride was prepared by the chlorination of vanadium pentoxide with hexachloropropene according to published procedure.5

Preparation of Vanadium(III) Squarate Trihydrate. A solution containing 0.76 g (2.9 mmol) of vanadium trichloride hexahydrate was mixed with a solution containing 0.50 g (4.5 mmol) of squaric acid. The dark brown color of the vanadium trichloride solution was almost immediately replaced by an olive green precipitate. The solution was stirred for about 24 hr before the precipitate was filtered, washed with acetone and ether, and dried in a vacuum desiccator over calcium chloride. Anal. Calcd for VIII(OH)C₄O₄·3H₂-O: V, 21.8; C, 20.5; H, 2.99. Found: V, 20.2; C, 20.7; H, 3.17.

(4) P. H. Tedesco and H. F. Walton, Inorg. Chem., 8, 933 (1969). (5) W. W. Porterfield and S. Y. Tyree, Jr., Inorg. Syn., 9, 133 (1967).